Green's function - перевод на русский
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Green's function - перевод на русский

GREEN'S FUNCTIONS
Greens function; Green's functions; Green’s function; Green's Functions; Green's Function
  • If one knows the solution <math display="inline">G(x,x')</math> to a differential equation subject to a point source <math display="inline">\hat{L}(x) G(x,x') = \delta(x-x')</math> and the differential operator <math display="inline">\hat{L}(x)</math> is linear, then one can superpose them to build the solution <math display="inline">u(x) = \int f(x') G(x,x') \, dx'</math> for a general source <math display="inline">\hat{L}(x) u(x) = f(x)</math>.

Green's function         

научный термин

функция Грина

физика

функция влияния

function of several variables         
  • A binary operation is a typical example of a bivariate function which assigns to each pair <math>(x, y)</math> the result <math>x\circ y</math>.
  • A function that associates any of the four colored shapes to its color.
  • Together, the two square roots of all nonnegative real numbers form a single smooth curve.
  • Graph of a linear function
  • The function mapping each year to its US motor vehicle death count, shown as a [[line chart]]
  • The same function, shown as a bar chart
  • Graph of a polynomial function, here a quadratic function.
  • Graph of two trigonometric functions: [[sine]] and [[cosine]].
  • right
ASSOCIATION OF A SINGLE OUTPUT TO EACH INPUT
Mathematical Function; Mathematical function; Function specification (mathematics); Mathematical functions; Empty function; Function (math); Ambiguous function; Function (set theory); Function (Mathematics); Functions (mathematics); Domain and range; Functional relationship; G(x); H(x); Function notation; Output (mathematics); Ƒ(x); Overriding (mathematics); Overriding union; F of x; Function of x; Bivariate function; Functional notation; Function of several variables; Y=f(x); ⁡; Draft:The Repeating Fractional Function; Image (set theory); Mutivariate function; Draft:Specifying a function; Function (maths); Functions (math); Functions (maths); F(x); Empty map; Function evaluation
функция нескольких переменных
empty function         
  • A binary operation is a typical example of a bivariate function which assigns to each pair <math>(x, y)</math> the result <math>x\circ y</math>.
  • A function that associates any of the four colored shapes to its color.
  • Together, the two square roots of all nonnegative real numbers form a single smooth curve.
  • Graph of a linear function
  • The function mapping each year to its US motor vehicle death count, shown as a [[line chart]]
  • The same function, shown as a bar chart
  • Graph of a polynomial function, here a quadratic function.
  • Graph of two trigonometric functions: [[sine]] and [[cosine]].
  • right
ASSOCIATION OF A SINGLE OUTPUT TO EACH INPUT
Mathematical Function; Mathematical function; Function specification (mathematics); Mathematical functions; Empty function; Function (math); Ambiguous function; Function (set theory); Function (Mathematics); Functions (mathematics); Domain and range; Functional relationship; G(x); H(x); Function notation; Output (mathematics); Ƒ(x); Overriding (mathematics); Overriding union; F of x; Function of x; Bivariate function; Functional notation; Function of several variables; Y=f(x); ⁡; Draft:The Repeating Fractional Function; Image (set theory); Mutivariate function; Draft:Specifying a function; Function (maths); Functions (math); Functions (maths); F(x); Empty map; Function evaluation

математика

пустая функция

Википедия

Green's function

In mathematics, a Green's function is the impulse response of an inhomogeneous linear differential operator defined on a domain with specified initial conditions or boundary conditions.

This means that if L {\displaystyle \operatorname {L} } is the linear differential operator, then

  • the Green's function G {\displaystyle G} is the solution of the equation L G = δ {\displaystyle \operatorname {L} G=\delta } , where δ {\displaystyle \delta } is Dirac's delta function;
  • the solution of the initial-value problem L y = f {\displaystyle \operatorname {L} y=f} is the convolution ( G f {\displaystyle G\ast f} ).

Through the superposition principle, given a linear ordinary differential equation (ODE), L y = f {\displaystyle \operatorname {L} y=f} , one can first solve L G = δ s {\displaystyle \operatorname {L} G=\delta _{s}} , for each s, and realizing that, since the source is a sum of delta functions, the solution is a sum of Green's functions as well, by linearity of L.

Green's functions are named after the British mathematician George Green, who first developed the concept in the 1820s. In the modern study of linear partial differential equations, Green's functions are studied largely from the point of view of fundamental solutions instead.

Under many-body theory, the term is also used in physics, specifically in quantum field theory, aerodynamics, aeroacoustics, electrodynamics, seismology and statistical field theory, to refer to various types of correlation functions, even those that do not fit the mathematical definition. In quantum field theory, Green's functions take the roles of propagators.

Как переводится Green's function на Русский язык